
SoftGUESS: Visualization and Exploration of Code Clones in Context

Eytan Adar and Miryung Kim
University of Washington, Computer Science and Engineering

{eadar,miryung}@cs.washington.edu

Abstract

We introduce SoftGUESS, a code clone exploration

system. SoftGUESS is built on the more general
GUESS system which provides users with a mechanism
to interactively explore graph structures both through
direct manipulation as well as a domain-specific
language. We demonstrate SoftGUESS through a
number of mini-applications to analyze evolutionary
code-clone behavior in software systems. The mini-
applications of SoftGUESS represent a novel way of
looking at code-clones in the context of many system
features. It is our hope that SoftGUESS will form the
basis for other analysis tools in the software-
engineering domain.

1. Introduction

The analysis of code clone data readily lends itself to
graph-based analysis and visualization. However, the
relationship of code clones both to themselves and
other system objects creates a tangled nest of objects
and links which can be difficult to explore. To
facilitate different levels of graphical analysis—
anything from clones embedded in dependency
diagrams to genealogies [10]—we implemented the
SoftGUESS library. SoftGUESS is based on GUESS,
the Graph Exploration System [1], a novel graph
visualization and analysis program. GUESS
distinguishes itself from other efforts by providing a
domain-specific language for the manipulation,
analysis, and visualization of graphs. Unlike tools
which force overly-generalized or overly-specific
graph representations, GUESS allows users in many
fields—from social to computer to biological
networks—to analyze their domain-specific graph
representations.

SoftGUESS consists of a code library and a number
of mini-applications that supports the analysis of code-
clones in the context of system dependencies,
authorship information, package structures, and other
system features. SoftGUESS supports visualization of
code clones in a single version or a program as well as
views of changing clone over multiple version of the
program. Code cloning behavior in software systems
has been broadly studied (e.g. [2][6][8][9][10][11]) but

primarily for the purposes of identifying targets for
refactoring (e.g. [3][4][6]). One of the most recent of
these studies [10] analyzed the code clone behavior of
two medium size open source projects, Carol
(carol.objectweb.org) and dnsjava (www.dnsjava.org).
By analyzing multiple versions of each codebase, the
authors of [10] studied how clones change over time.

In designing the components of SoftGUESS, we
were motivated by previous visualization work on
code-clones including graphs of genealogy [10],
spectographs [15] , code evolution views [13], dot-plot
views [5][8], Hasse diagrams [7], and polymetric
views[14]. While all convey some information about
the evolution of a codebase, these perspectives do not
always allow us to understand clone evolution
behavior in the context of other important system
attributes, switch between contexts, or experiment with
multiple contexts simultaneously. The ability to
quickly move through these views, issue queries and
visualize results—as static figures and dynamic
animations—is beneficial for both researchers and end-
users.

As an example, we imagine a scenario in which a set
of clones diverge at some early time period and
different developers take ownership of each copy. At
some later time, one developer corrects a bug in the
clone copy that is within their purview. A second
developer, unaware of this fix, will not know whether
to correct the bug. Using SoftGUESS, it is possible to
quickly determine a) how often this phenomenon
occurs, and b) to implement a check that traces back
the history of the clone to the point of divergence and
subsequently propagates a notification to authors
responsible for different branches of the clone.

In another scenario a user may want to find locations
in which the code-clone represents a large percentage
of the content of the method, class or package that
contains the clone snippet (i.e. segment). Methods that
are largely or entirely copies of one another, and are
called with the same parameters, may be eligible for
refactoring. A simple query in SoftGUESS can find
and visualize these spots in the code base.

Below, we begin with a brief introduction to GUESS
and describe the major extensions built for
SoftGUESS. Each extension provides a different view

of the clone genealogy dataset and provides a
mechanism for asking questions on clone behavior.

2. Gython Basics

Gython [1] is an embedded Python/Jython based
language and interactively controls GUESS. Nodes
and edges in GUESS are first class objects which may
hold any set of properties including strings, numbers,
Booleans, and so on. Dynamic properties, such as
degree or importance metrics (e.g. PageRank), are
calculated on demand. Certain properties (e.g. color,
width, label) have a meaning to the visualization
subsystem (e.g. the command node1.color = red will
set node1 to red and (node1,node2).size = 10 will set
both nodes to 10 pixels).

In addition, Gython pre-defines several methods,
such as getPredecessors(), getSucessors(),
getOutEdges(), etc, to access graph structures quickly.
Edges are selected using special operators on
individual nodes and node sets (e.g. node1->node2).

A more powerful feature of Gython is the built-in,
SQL-like query language. For example, snippet_size
> 10 will return those nodes that are longer than 10
lines of code. GUESS supports most SQL operators
(e.g. !=, <, >, like, etc.) as well as a few extras for
range queries. This feature enables programmers to
easily navigate and explore a particular set of code
clones. For example, a programmer may want to focus
on code clones with a substantial size in the
networking subsystem. To visually highlight these
clones, say for example by making them green, she
could type: ((snippet_size > 10) & (package like
‘%network%’)).color = green.

Finally, Gython defines many shortcut methods to
simplify certain analysis tasks. Frequently, users
would like to change a visualization attribute based on
some node or edge property (e.g. colorize(file) to color
clone snippets from each file differently). This is
similar to the polymetric views proposed in [14], but
with a much richer set of visual properties which can
be used to convey general system views. The
commands groupBy(…) and groupAndSortBy(…)
generate a set of sets corresponding to a parameter.
For example, one could identify the shortest lived
clone in each package by issuing the command: for c
in groupBy(package): (c.sortBy(lifespan)[0]).color =
red.

3. The Clone Genealogy Data Set

In constructing the clone dataset, it became apparent
that there were an overwhelming number of possible
visualizations. Clone snippets, methods, and classes
can be represented as nodes; dependencies, inheritance

and overloading relationships, containment, and
cloning relationships can be represented as edges.
Initially SoftGUESS concentrates on three specific
visualizations which highlight a number of distinct
relationship types (rather than combining them in an
uninformative way): (1) a simple visualization of clone
evolution, (2) clone evolution in conjunction with
containment relationships, and (3) clone evolution in
conjunction with structural dependencies. Each
visualization shows clones in the context of source
code (when a user clicks on a node), or a side-by-side
view of clone changes when an edge is clicked.

For the purposes of this paper we make use of one
particular clone genealogy dataset, specifically, the
data generated by [8] for the Carol system. This data
includes 37 versions over the course of 26 months.
For each release, the complete dependency diagram
was determined for each compilable version (using
DependencyFinder, http://depfind.sourceforge.net/).
Though more detailed views are possible, in order to
manage the size of the graph, only incoming and

Figure 1: A screenshot of the GUESS system.

Figure 2: The Genealogy Browser

outgoing edges from the method, class, and package
which contain or invoke clones were recorded.

Author information for each version was determined
through CVS logs. Each snippet was also annotated
with its size, the size of the method and containing
class, and the number and type of parameters in the
container method. Depending on the analysis mode,
graphs for the Carol system contained 8000-8500
nodes (i.e. clone snippets) and up to 35,000 edges.

4. Genealogy Browser

The Genealogy Browser, as shown in Figure 2, is the
simplest representation of clone genealogy data.
Nodes, representing code clones, are positioned from
left to right by version and clones from the same group
are placed next to each vertically. This layout is made
easy by the various clustering and graph processing
methods built into GUESS

Since most code clones do not actually change
between versions, the browser allows users to issue

commands like notEqualFilter(param) which will find
those edges where the end points change in parameter.
For example, we may be able to spot potential trouble
spots where clone ownership diverges by using
notEqualFilter(author). Other parameters include the
package, encapsulating method, the method type (i.e.
public, private, protected, or static), and the number
and type of parameters (params and param_types).
To support these certain exploration tasks we created a
tool bar that allows the selection of the parameter. In
all, the toolbar, libraries, and layout algorithm are
implemented in under 250 lines of Gython code.

5. Encapsulation Browser

The Encapsulation Browser, which is similar to the
system complexity view of [13][14], visualizes a tree
representing hierarchical containment of clone snippets
from the snippet itself (the leaves), through method,
class, and package definitions. The resulting graph
(8717 nodes and 16422 edges in the case of Carol) can
be used to answer questions about the movement of
clone snippets relative to each other in this hierarchy.
Each code release version is set as a graph “state” and
animated through GUESS’ dynamic visualization
feature. States are essentially a column in the
Genealogy Browser, connected by the encapsulating
Package/Class/Method (PCM) hierarchy to form a tree.

The layout algorithm, again simplified by GUESS
features, produces trees such as the one in Figure 3. In
this image the user has issued a colorize(clone_id)
command, coloring each clone group differently. One
can readily see the distribution of clones in the
containment hierarchy. Furthermore, because GUESS
allows for smoothing morphing between graph states,
we are able to create an animated view (see:
http://graphexploration.cond,org/softguess/) that
illustrates the movement and spread of code clones
over time. In this view, each clone appears at the
location of its predecessor in the genealogy and moves
to its location in the package hierarchy. A user is
easily able to identify the clone that has been copied to
a very distant package or class.

One task which we may wish to perform is finding
packages where snippets with high average snippet to
method length ratios. We can create a new parameter
(ms_ratio) dynamically on nodes as in the following:

for z in (version == 0):
leaves = findLeaves(z)
sum = 0
for k in leaves: sum = sum + k.ms_ratio
z.ms_ratio = sum / len(leaves)

and visualize the results by resizing each node from
low to high based on the percent using the command:
resizeLinear(ms_ratio,10,20).

Figure 4: Dependency Browser

Figure 3: Encapsulation Browser

6. Dependency Browser
The final SoftGUESS mini-application is the

Dependency Browser which represents the genealogy
graph augmented with the dependency edges. With
only classes in the Carol system represented, the graph
has 8475 nodes (i.e. 172 PCM nodes) and 35746 edges
of which the majority (25064) are incoming edges
from external PCM nodes to the clone snippets, and
only 2956 are outgoing edges from clone snippets to
other Carol PCMs.

Visualizing all versions simultaneously is not
particularly informative. Instead, a dependency graph
is generated for each version by only rendering edges,
PCMs and snippets present in that version (rendered as
circles and squares respectively) through a force-
directed layout technique. Incoming and outgoing
edges are colored differently, allowing users to quickly
get a sense of the distribution. Each clone snippet can
be colored or sized based on different properties (e.g.
the genealogy, the in-degree, etc.).

Using this graph a user can ask targeted questions
such as: “how many different clone genealogies are
depended on by a particular class?” or general ones
such as, “which objects depend on, or are depended
by, clones the most?” The answer for Carol is the
TraceCarol object with 2985 incoming edges and
RemoteShell object with 872 outgoing edges.

GUESS also provides basic charting methods. With
the command plotDistrib(indegree), a user can, for
example, identify clone snippets that are lightly
embedded in the dependency graph and may be easy to
refactor. The output of this command is illustrated in
Figure 4 with the rank-ordered in-degrees. The
example output is illustrated in Figure 4. Mousing
over the nodes in the top visualization will highlight
their location in the plot. Similarly, mousing over the
plot will highlight matching nodes in the graph.

6. Conclusions

The SoftGUESS library and mini-applications
represent a mechanism by which code-clones can be
visually and programmatically analyzed. The different
forms of analysis made possible by understanding
clones in the context of many other relationships are
made simpler by the power of the GUESS system. A
domain-specific language with which users can
investigate clones in single version snapshots, as well
as their changes over multiple versions, represents a
powerful way to analyze graphs. It is our hope that the
mini-applications and libraries created for SoftGUESS
will form the basis for other software-engineering
visualization and analysis tasks. In our continuing
work, we are also interested in performing more

evaluations and testing of the visualizations to validate
their usefulness.

GUESS and SoftGUESS, which are implemented in
a combination of Java and Gython, are freely available
at http://www.graphexploration.org.

7. Acknowledgements

We would like to thank David Notkin for his advice
in the implementation of SoftGUESS. Eytan Adar is
funded by an ARCS and NSF Fellowship.

8. Bibliography
[1] Adar, E., “GUESS: a language and interface for graph
exploration,” CHI 2006, Montreal, Canada, Apr. 22-27, pp.
791-800, 2006.
[2] Baker, B. “A program for identifying duplicated code,”
Computing Science and Statistics, 24:49-57, 1992.
[3] Balazinska, M., E. Merlo, M. Dagenais, B. Lague, and
K. Kontogiannis, “Measuring clone based reengineering
opportunities.” METRICS ‘99, Boca Raton, FL, Nov. 4-6,
pp. 292-303, 1999.
[4] Burd, E., and J. Bailey, “Evaluating clone detection
tools for use during preventative maintenance.” SCAM’02,
Montreal, Canada, Oct. 1, pp. 36-43, 2002.
[5] Ducasse, S., M. Rieger, and G. Golomingi, “Tools
Support for Refactoring Duplicated OO Code,” ECOOP ’99,
Lisbon, Portugal, 1999.
[6] Higo, Y., T. Kamiya, S. Kusumoto, and K. Inoue,
“Refactoring support based on code clone analysis,”
PROFES ’04, Kyoto, Japan, Apr. 5-8, pp. 220-233, 2004.
[7] Johnson, J. H., “Visualizing Textual Redundancy in
Legacy Source,” CASCON ’94, Toronto, Canada, Oct 1 –
Nov. 3, pp. 9-18, 1994.
[8] Kamiya, T., S. Kusumoto, and K. Inoue. “CCFinder: A
multilinguistic token-based code clone detection system for
large scale source code,” IEEE TSE., 28(7):654-670, 2002.
[9] Kim, M. and David N., “Using a Clone Genealogy
Extractor for Understanding and Supporting Evolution of
Code Clones,” MSR ‘05, St. Louis, MO, May 17th, 2005.
[10] Kim, M., V. Sazawal, D. Notkin, and G. C. Murphy,
“An Empirical Study of Code Clone Genealogies,”
ESEC/FSE ‘05 Lisbon, Portugal, Sep. 7-9, 2005.
[11] Krinke, J., “Identifying similar code with program
dependence graphs.” WCRE ‘01, Stuttgart, Germany, Oct. 2-
5, pp. 301-309, 2001.
[12] Li, Z., S. Lu, S. Myagmar, and Y. Zhou. “CP-Miner: A
tool for finding copy-paste and related bugs in operating
system code,” OSDI ’04, San Francisco, CA, Dec. 6-8, pp.
289-302, 2004.
[13] Nierstrasz, O., “The Story of Moose,” ESEC/FSE ‘05
Lisbon, Portugal, September 7-9, 2005.
[14] Rieger, M., S. Ducasse, and M. Lanza, “Insights Into
System-Wide Code Duplication,” WCRE ’04, Nov 8-12,
Delft, The Netherlands, pp. 80-89, 2004.
[15] Wu, J., R.C. Holt, and A.E. Hassan, “Exploring
software evolution using spectographs,” WCRE ’04, Nov 8-
12, Delft, The Netherlands, pp. 100-109, 2004.

