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1. INTRODUCTION

Human-computer interaction (HCI) works to understand and to design interactions
between people and machines. Increasingly, human collectives are using technology to
gather together and coordinate. This mediation occurs through volunteer and interest-
based communities on the web, through paid online marketplaces, and through mobile
devices.

The lessons of HCI can therefore be brought to bear on different aspects of collec-
tive intelligence. On the one hand, the people in the collective (¢he crowd) will only
contribute if there are proper incentives and if the interface guides them in usable
and meaningful ways. On the other, those interested in leveraging the collective need
usable ways of coordinating, making sense of, and extracting value from the collec-
tive work that is being done, often on their behalf. Ultimately, collective intelligence
involves the co-design of technical infrastructure and human-human interaction: a
socio-technical system.

In crowdsourcing, we might differentiate between two broad classes of users: re-
questers and crowd members. The requesters are the individuals or group for whom
work is done or who takes the responsibility to aggregate the work done by the collec-
tive. The crowd member (or crowd worker) is one of many people to contribute. While
we often use the word “worker,” crowd workers do not have need to be (and often aren’t)
contributing as part of what we might consider standard “work.” They may work for
pay or not, work for small periods of time or contribute for days to a project they care
about, and they may work in such a way as each individual’s contribution may be
difficult to discern from the collective final output.

HCI has a long history of studying not only the interaction between individuals with
technology, but also the interaction of groups with or mediated by technology. For ex-
ample, computer-supported cooperative work (CSCW) investigates how to allow groups
to accomplish tasks together using a shared or distributed computer interfaces, either
at the same time or asynchronously. Current crowdsourcing research alters some of
the standard assumptions about the size, composition, and stability of these groups,
but the fundamental approaches remain the same. For instance, workers drawn from
the crowd may be less reliable than groups of employees working on a shared task, and
group membership in the crowd may change more quickly.

There are three main vectors of study for HCI and collective intelligence. The first
is directed crowdsourcing, where a single individual attempts to recruit and guide a
large set of people to help accomplish a goal. The second is collaborative crowdsourcing,
where a group gathers based on shared interest and self-determine their organization
and work. The third vector is passive crowdsourcing, where the crowd or collective
may never meet or coordinate, but it is still possible to mine their collective behav-
ior patterns for information. We cover each vector in turn. We conclude with a list of
challenges for researches in HCI related to crowdsourcing and collective intelligence.
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2. DIRECTED CROWDSOURCING

Directed crowdsourcing describes systems where an algorithm or person directs work-
ers to pursue a specific goal. For example, a requester might seek to gather a crowd to
tag images with labels or to translate a poem. Typically, this involves a single requester
taking a strong hand in designing the process for the rest of the crowd to follow.

This section overviews work in directed crowdsourcing, including considerations to
be made when deciding whether a particular problem is amenable to directed crowd-
sourcing, how to design tasks, and how to recruit and involve workers.

Workers in directed crowdsourcing generally complete tasks that the requester asks
to be completed. Why would they perform the task? Sometimes the goals of requesters
and workers are aligned, as is the case in much of the crowdsourcing work being done
in citizen science. For instance, the crowd cares about a cause, e.g. tracking and count-
ing birds [Louv et al. 2012], and the requester’s direction is aimed primarily at coordi-
nating and synthesizing the work of willing volunteers.

In other situations, crowd workers may not share the same goal as the requester. In
this case, one challenge is to design incentives that encourage them to participate. This
can be tricky because workers may have different reasons for participating in crowd
work: for example, money, fun, or learning.

Several systems have introduced elements of games into crowd tasks, i.e. gamified
them, to incentivize workers by making the tasks more enjoyable. For instance, the
ESP Game is a social game that encourages players to label images by pairing them
with a partner who is also trying to label the same image [Von Ahn and Dabbish 2004].
Likewise, FoldIt players found stable protien configurations that had eluded scientists
for a decade [Khatib et al. 2011]. A challenge with gamification is that it can take years
and significant insight to convert most tasks to games that people will want to play.
It can also be difficult to attract players to the game, and the games popularity may
change over time. Some of these games have been successful, while many others have
attracted few players.

Another option is to pay crowd workers. Paid crowdsourcing differs from traditional
contract labor in that it often occurs at very small timescales (for similarly small in-
crements of money), and often interaction with the worker can be fully or partially
programmatic. This form of crowdsourcing often takes place in online marketplaces
such as Amazon Mechanical Turk and Elance-oDesk. In paid crowdsourcing, a work-
ers incentive is ostensibly money, although money is not the only motivator even in
paid marketplaces [Antin and Shaw 2012]. Money may affect but cannot be reliably
used to improve desirable features of the game play, e.g. quality of the work, timeli-
ness of the work [Mason and Watts 2010]. Because of the ease by which paid workers
can be recruited, paid crowdsourcing, especially Amazon Mechanical Turk, is a popular
prototyping platform for research and product in crowdsourcing.

An alternative approach is to collect crowdsourcing as a result (or by-product) of
something else the user (or worker) wanted to do. For instance, reCAPTCHA is popu-
lar service that attempts to differentiate people from machines on the web by present-
ing a puzzle comprised of blurry text that must be deciphered in order to prove that
one is human [von Ahn et al. 2008]. As opposed to other CAPTCHAs, reCAPTCHA
has a secondary goal of converting poorly-scanned books to digital text. reCAPTCHA
presents two strings of text, one that it knows the answer to and one that it does not.
By typing the one it knows the answer to, the user authenticates himself. By typing
the one it does not know, the user contributes to the goal of digitizing books. DuoLingo
uses a similar approach to translate documents on the web into new languages as a
byproduct of users learning a foreign language [Hacker and von Ahn 2012].
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2.1. Quality & Workflows

When a requester asks for people to help her with a task, they will often do exactly
what is asked, but not quite what was desired. Quality control mechanisms and work-
flows can help ensure better results. Interestingly, however, the quality of outputs from
paid crowdsourcing is not a clear function of the price paid. For instance, paying more
has been found to increase the quantity but not necessarily the quality of the work that
is done [Mason and Watts 2010]. The usability of the task at hand can affect how well
workers perform at the task. Human-computer interaction offers crowdsourcing meth-
ods for engineering tasks that crowd workers are likely to be able to do well with little
training. Because crowd workers are often assumed to be new to any particular task,
designing to optimize learnability is important, whereas other usability dimensions
like efficiency or memorability may be less so.

Crowdsourcing tasks are often decomposed into small, atomic bits of work called
microtasks. As a result, workers may not understand how their contribution fits into
a broader goal and this can impact the quality of their work. One approach for com-
pensating for the variable quality of the work received and for combining the small
efforts of many workers is to use a workflow, also sometimes called a crowd algorithm.
Some common workflows are iterative improvement [Little et al. 2009], parallel work
followed by a vote [Little et al. 2009], map-reduce [Kittur et al. 2011], find-fix-verify
(FFV) [Bernstein et al. 2010a], and crowd clustering [Chilton et al. 2013]. Good work-
flows help to achieve results that approach the performance of the average worker in
the crowd, and sometimes can help achieve the "wisdom of the crowd” effect of the
group being better than any one individual. Practically, they also allow large tasks
to be consistently completed, even if each worker only works on the task for a short
amount of time.

For example, Soylent is a Microsoft Word plugin that allows the crowd to help edit
documents, for instance fixing spelling/grammar, or shortening the document without
changing its meaning. It introduced the Find-Fix-Verify workflow, which proceeds in
3 steps: (i) workers find areas in the document can could be appropriate for improve-
ment, (ii) a second set of workers propose candidate changes (fixes), and (iii) a third set
of workers verify that the candidate changes would indeed be good changes to make.
The FFV workflow has a number of benefits. First, it was observed previously that
workers tended to make the least acceptable change. For instance, if they were asked
to directly fix the document or to make it smaller they would find a single change to
make. The “find” step encourages multiple workers to find many places to fix in the
document (or their assigned chunk of the document). The fix and verify steps are then
scoped to that particular location. It was observed that resulted in more problems be-
ing found and fixed.

Workflows can often get complex, requiring many layers of both human and ma-
chine interaction. For instance, PlateMate combines several crowd-powered steps with
machine-powered steps into a complex workflow that is able to match the performance
of expert dieticians in determining the nutritional content of a plate of food [Noronha
et al. 2011]. For a new problem that one wants to solve with crowdsourcing a chal-
lenge can be coming up with an appropriate workflow that allows crowd workers to
contribute toward the end goal.

As crowdsourcing broadens from amateur microtasks to goals involving groups of
interdependent experts, the nature of these workflows may evolve. Flash Teams offer
one vision, where computation acts as a coordinating agent to draw together diverse
experts from platforms such as Elance-oDesk [Retelny et al. 2014]. These kinds of
approaches have already enabled crowdsourcing of a broad class of goals including
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design prototyping, course development, and film animation, in half the work time of
traditional self-managed teams.

2.2. Interactive Crowd-Powered Systems

Traditional workflows can be quite time-consuming as each iteration requires crowd
workers to be recruited and to perform their work. Near real-time workflows use time
as a constraint and often work by having workers work in parallel and then having
either an automatic or machine process make sense of the work as it is produced. The
first step is to pre-recruit a group of workers who are then available to do work at inter-
active speeds once the work to be done is available. The SeaWeed system pre-recruited
a group of workers who would then collectively play economics games [Chilton et al.
2009]. VizWiz pre-recruited workers and had them answer old questions until a new
question came in for them [Bigham et al. 2010]. Adrenaline used a retainer pool to re-
cruit a group of workers and then showed that this group could be called back quickly
[Bernstein et al. 2011]. Workers in the retainer are paid a small bonus to be part of the
pool, and collect these earnings if they respond quickly enough when asked. Turko-
matic recruits workers and then lets them be programmatically sent to a task as a
group [Kulkarni et al. 2011].

There is also value in getting the workers to work together synchronously. One rea-
son to do this is to build real-time systems that are able to compensate for common
problems in the crowd — namely, workers sometimes perform poorly and sometimes
leave the task for something else to do. For instance, the Legion system puts crowd
workers in control of a desktop interface by having them all contribute keyboard and
mouse commands [Lasecki et al. 2011]. The crowd worker who for a given time in-
terval is most similar to the others is elected a leader to assume full control, thus
balancing the wisdom of the crowds with a real-time time constraint. This system was
used across a variety of desktop computing applications and even to control a wireless
robot. Adrenaline uses a similar concept to quickly refine and then eventually pick a
high-quality frame from a digital video, thus creating a real-time crowd-powered cam-
era.

Another reason to work as a group is to accomplish a goal that no worker could ac-
complish alone. The Scribe system allows a group of workers to collectively type part of
what they hear in real-time along with a speaker [Lasecki et al. 2012]. An automated
process then stitches the pieces back together using a variant of Multiple Sequence
Alignment [Naim et al. 2013]. No worker is able to keep up with natural speaking
rates alone, but collectively they can by using this approach. Employing a group al-
lows the task to be made easier in ways that would not be possible if a single person
were responsible for typing everything. Most obviously, each worker only has to type
part of what he hears, but, more interestingly, when working as part of a group each
workers task can be made even easier. The audio of the portion of speech the workers
is expected to type can be algorithmically slowed down, which allows the worker to
more easily keep up [Lasecki et al. 2013]. The remainder of the audio is then sped up
so that the worker can keep context. Overall, this increases recall and precision, and
reduces latency.

2.3. Programming with the Crowd

Crowd-powered systems behave differently than completely automated systems, and a
number of programming environments have been constructed to assist designing and
engineering them. For instance, crowd workers are often slow and expensive, so TurkIt
allows programs to reuse results from tasks sent to the crash, employing a “crash and
run” paradigm that allows for easier programming [Little et al. 2009]. Both VizWiz and
Soylent, for example, were programmed using TurKit as a scaffold. AskSheet embeds
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crowd work into a spreadsheet and helps to limit steps that need to be done by crowd
workers in order to make decisions [Quinn and Bederson 2014].

Jabberwocky exposes workflows as programming language primitives, and supports
operation on top of a number of different kinds of crowds, including both Mechanical
Turk and also social sources like Facebook [Ahmad et al. 2011]. One of the workflows
it makes easily available is a crowdsourcing equivalent of Map Reduce called Man
Reduce. Jabberworky builds on CrowdForge’s approach for having work automatically
divided up in the Map step for multiple workers to each complete, and then combined
back together in the reduce step [Kittur et al. 2011]. One example of this is writing an
essay by assigning different paragraphs to different workers and then having a reduce
step in which those paragraphs are combined back together.

When crowd-powered systems do not behave as expected, it can be difficult to figure
out why. Some systems have been developed to allow for the equivalent of debugging.
For instance, CrowdScape records low-level features of how crowd workers perform
their task and then allows requesters to easily visualize these recordings [Rzeszo-
tarski and Kittur 2012]. This can help to identify confusing aspects of the task, un-
derstand where improvements are most needed, e.g. in code or the crowd tasks, and
allow requesters to understand performance even on subjective tasks. The scrolling,
key presses, mouse clicks, etc. that collectively define a task fingerprint can be useful
in understanding how the work was done. If a user was requested to read a long pas-
sage and then answer a question about it, we might assume that the work was not
done well if they scrolled quickly past the text and immediately input an answer.

2.4. Drawbacks and ethics of microtasking

The human-computer interaction field is acutely aware of the effects that the socio-
technical systems that are created may have on the future of crowd work. Crowds
bear the potential of mass action and people power. Yet as Irani and Silberman have
argued [Irani and Silberman 2013], AMTs design directs this collective power into reli-
able, steadily humming computational infrastructure. This infrastructure is designed
to keep questions of ethical labor relations or worker variation out of requesters (em-
ployers) sight. This may lead to undesirable consequences for crowdsourcing, such as
workers being divorced from the tasks they work on and reduced value being assigned
to expertise. Microtasks remain popular despite their drawbacks because they are ac-
cessible and often low-effort for requesters.

One way that crowd work has been viewed in the past is as a source of very low-cost
labor. Because this labor sometimes provides low-quality input, techniques need to be
derived to compensate for it. One of the goals of human-computer interaction research
in crowdsourcing is to demonstrate the potential for a brighter future for crowd work
in which workers are able to accomplish together something that they could not have
accomplish on their own.

It may be tempting in crowd work to treat workers as program code. Some have
recognized that this prevents many of the benefits of crowd workers being human
from being realized. For instance, once crowd workers learn a new task, they are likely
to be better (faster, more accurate) at it. As a result, it may make sense to keep a
worker around over time completing similar work to improve throughput, which is
advantageous to both workers and requesters.

Concerns about labor practices have led to work exploring current demographics of
workers and work that explicitly considers how to improve working conditions. “The
Future of Crowd Work” notes a number of suggestions for improving crowd work, in-
cluding allowing workers to learn and acquire skills from participating in crowd work
[Kittur et al. 2013]. A common but incorrect notion about Mechanical Turk, for in-
stance, is that workers are mostly anonymous — however, this has since been shown
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not to be true [Lease et al. 2013]. A growing theme among human-computer interaction
research is in realizing both the advantages of a programmatically-available source of
human intelligence, and the essential humanness of the participants.

3. COLLABORATIVE CROWDSOURCING

Many of the most famous crowdsourcing results are not directed. Instead, they depend
on volunteerism or other non-monetary incentives for participation. For example, vol-
unteer crowds have:

— Authored Wikipedia!, the largest encyclopedia in history,

— Helped NASA identify craters on Mars [Kanefsky et al. 2001],

— Surveyed satellite photos for images of a missing person [Hellerstein and Tennen-
house 2011],

— Held their own in chess against a world champion [Nalimov et al. 1999],

— Solved open mathematics problems [Cranshaw and Kittur 2011b],

— Generated large datasets for object recognition [Russell et al. 2008],

— Collected eyewitness reports during crises and violent government crackdowns
[Okolloh 2009], and

— Generated a large database of common-sense information [Singh et al. 2002].

Each of these successes relied on the individuals’ intrinsic motivation to participate
in the task. Intrinsic motivation, unlike extrinsic motivators from the previous section
such as money, means that participants bring their own excitement to the table: for
example, via interest in the topic, desire to learn, or drive to experience new things
[Ryan and Deci 2000].

While these systems often have leaders, as in Jimmy Wales’ leadership of Wikipedia
or the main contributors to an open source project, we refer to these systems as col-
laborative crowdsourcing efforts here. Doing so distinguishes them from the earlier
efforts where a single individual is more directly driving the group’s vision and tasks.
Often, in collaborative crowdsourcing, the group exercises self-determination and self-
management to plan its own future before executing it.

Human-computer interaction research first seeks to understand these sociotechnical
systems. Why do they work? What do they reveal about the human processes behind
collective intelligence? How do changes to the design or tools influence those processes?

Second, in parallel, human-computer interaction research aims to empower these
self-directed systems through new designs. These designs may be minor changes that
produce large emergent effects, for example recruiting more users to share movie rat-
ings [Beenen et al. 2004]. Or, they may be entirely new systems, for example creating
a community to capture 3-D models of popular locations through photographs [Tuite
et al. 2011].

This research plays itself out across themes such as leadership, coordination, and
conflict as well as through the type of information provided by the crowd. For each
aspect, many decisions will influence the effectiveness and fit of a particular design for
different contexts. Here, we look at each in turn.

3.1. Leadership and decision-making

When the group is self-organizing, decision-making becomes a pivotal activity. Does
the group spend more time debating its course of action than actually making
progress?

Niki Kittur and colleagues undertook one the most well-known explorations of this
question, using Wikipedia as a lens [Kittur et al. 2007]. The authors obtained a com-

Lhttp://www.wikipedia.org
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plete history of all Wikipedia edits, then observed the percentage of edits that were
producing new knowledge (e.g., edits to article pages) vs. edits that were about co-
ordinating editing activities (e.g., edits to talk pages or policy pages). Over time, the
number of article edits decreased from roughly 95% of activity to just over half of ac-
tivity on Wikipedia. The result suggests that as collective intelligence activities grow
in scope and mature, they may face increased coordination costs.

Leadership faces other challenges. Follow-on work discovered that as the number of
editors on an article increases, the article’s quality only increases if the editors take
direct action via edits rather than spend all their effort debating in Wikipedia’s talk
pages [Kittur and Kraut 2008]. In policy decisions, senior members of the community
have more than average ability to kill a proposal, but no more than average ability to
make a proposal succeed [Keegan and Gergle 2010]. In volunteer communities, it may
be necessary to pursue strategies of distributed leadership [Luther et al. 2013]. These
strategies can be more robust to team members flaking unexpectedly.

In terms of design, socializing new leaders is challenging. There is a debate whether
future leaders are different from even their earliest activities [Panciera et al. 2009] or
whether they are just like other members and can be scaffolded up through legitimate
peripheral participation [Lave and Wenger 1991; Preece and Shneiderman 2009]. Soft-
ware tools to help train leaders can make the process more successful [Morgan et al.
2013].

3.2. Coordination

Crowds can undertake substantial coordination tasks on demand. In these situations,
emergent coordination among crowds takes the place of explicit leadership. Crisis in-
formatics, as one example, focuses on coordination in the wake of major disasters such
as earthquakes and floods. Groups have adopted social media such as Twitter to pro-
mote increased situational awareness during such crises [Vieweg et al. 2010]. When
official information is scarce and delayed, affected individuals can ask questions and
share on-the-ground information; remote individuals can help filter and guide that
information so it is most impactful [Starbird 2013].

Coordination can be delicate. On one hand, successful scientific coordinations such
as the Polymath project demonstrate that loosely guided collaborations can suc-
ceed [Cranshaw and Kittur 2011a]. In the Polymath project, leading mathematicians
blogged the process of solving a mathematics problem and recruited ideas and proofs
from their readers. On the other hand, distributed voting sites such as Reddit exhibit
widespread underprovision of attention [Gilbert 2013] — in other words, the users’ at-
tention is so focused on a few items that they often miss highly viral content the first
time it is posted. Platforms such as Kickstarter may offer a “living laboratory” [Chi
2009] for studying collective coordination efforts at large (e.g., [Gerber et al. 2012]).

3.3. Conflict

Most collective intelligence systems will produce internal conflict. Some systems are
even designed to host conflict (e.g., systems to support deliberative democracy). The
objective of such designs is not to remove or resolve disagreement, but rather to show
participants points of agreement and contention.

For example, Reflect [Kriplean et al. 2011b] and ConsiderIt [Kriplean et al. 2011a]
are designed to host discussion and debate. In order to do so, they introduce procedural
changes into the format of the discussion. For example, Reflect asks each commenter
to first summarize the original poster’s points. Considerlt, focused on state election
propositions, instead asks visitors to author pro/con points rather than leave unstruc-
tured comments.
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Design may also aim to increase awareness of other perspectives. By visualizing how
much users’ content consumption is biased, browser plugins can encourage readers to
balance the news perspectives [Munson et al. 2013]. Projects such as OpinionSpace
[Faridani et al. 2010] and Widescope [Burbank et al. 2011] likewise demonstrate how
even people who disagree on binary choices may in practice be closer in opinion than
they think.

3.4. Participation

Though leadership, cooperation, and the management of conflict are important in the
construction of effective crowd systems, continuous, active participation is critical.
Without participation in collective intelligence activities, there is no collective, and
thus no intelligence. The online communities literature has devoted considerable en-
ergy to studying how to attract and maintain participation. Ideas of incentives and
motivation are also extensively discussed in Chapters 5 and 8.

The GroupLens project has produced some of the most influential research investi-
gating this question. Years ago, GroupLens created the MovieLens site, which was an
early movie recommender service, and it attracted a steady amount of volunteer us-
age. The researchers then began applying concepts from social psychology to increase
participation on MovieLens. For example, they found that calling out the uniqueness
of a user’s contributions and creating challenging but achievable goals increased the
number of movies that users would rate on the site [Beenen et al. 2004].

Other successful approaches include creating competitions between teams [Beenen
et al. 2004] or calling out the number of other people who have also contributed [Sal-
ganik and Watts 2009]. Kraut and Resnick’s book on online communities provides an
extremely thorough reference for this material [Kraut et al. 2012].

3.5. Information seeking and organizational intelligence

Human-computer interaction has long focused on user interaction with many kinds
of information. Thus, a second set of key decision points relates to the kind of infor-
mation we would like to pull from the crowd. For example, in some situations, this
information already exists in the heads of other individuals. Mark Ackerman intro-
duced the idea of actively recruiting and gathering this knowledge, through a system
called Answer Garden [Ackerman and Malone 1990]. Answer Garden was the precur-
sor to today’s question-and-answer (Q&A) systems such as Yahoo! Answers and Quora.
It encouraged organization members to create reusable knowledge by asking questions
and retaining the answer for the next user who needed it.

Since Answer Garden, these systems have matured into research and products such
as the social search engine Aardvark [Horowitz and Kamvar 2010]. Recent work has
focused on social search [Evans and Chi 2008; Morris et al. 2010], where users ask
their own social networks to help answer a question. This approach of friendsourcing
[Bernstein et al. 2010b] can solve problems that generic crowds often cannot.

3.6. Exploration and discovery

Crowds bring together diverse perspectives; as Linus Torvalds’s saying goes, “given
enough eyeballs, all bugs are shallow.” Thus, it’s not surprising that some of the most
influential crowdsourcing communities have focused around discovery.

Mentioned earlier, the FoldIt protein folding game is the most well-known example
of crowd discovery. FoldIt is a simulation and puzzle game where players try to fold the
a protein’s structure as well as possible [FoldIt 2008]. The game has attracted nearly
250,000 players, and their players have uncovered protein folding configurations that
have baffled scientists for years [Cooper et al. 2010]. That this result appeared in
Nature suggests something about its ability to solve important hard problems.

Collective Intelligence Handbook, 2014.
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FoldIt attracted novices. This is not uncommon where the scientific goal holds in-
trinsic interest: the Galaxy Zoo project, which labels galaxy images from a star survey
[Lintott et al. 2008], is another good example. Cooperative crowdsourcing tools may
also allow users to go deep and explore micro-areas of interest: for example, collabo-
rative visualization tools such as sense.us [Heer et al. 2007] and ManyEyes [Viegas
et al. 2007] allowed users to share visualizations and collaboratively work to explain
interesting trends.

3.7. Creativity

Can crowds be creative? Certainly members of that crowd can be. Researchers created
the Scratch online community for children to create and remix animations [Resnick
et al. 2009]. However, it’s not clear that remixing actually produces higher-quality
output [Hill and Monroy-Hernandez 2013]. In a more mature setting, members of
the Newgrounds animation site spend many hours creating collaborative games and
animations. These collaborations are delicate and don’t always succeed [Luther and
Bruckman 2008]. When they do succeed, the onus is on the leader to articulate a clear
vision and communicate frequently with participants [Luther et al. 2010].

HCI pursues an understanding of how to best design for the success of creative col-
laborations. For example, it may be that structuring collaborative roles to reflect the
complementary creative strengths of the crowd and the individual can help. Ensemble
is a collaborative creative writing application where a leader maintains a high-level
vision and articulates creative constraints for the crowd, and the crowd generates text
and contributions within those constraints [Kim et al. 2014]. In the domain of music,
data from the annual February Album Writing Month (FAWM) uncovered how comple-
mentary skill sets can be predictive of successful creative collaborations [Settles and
Dow 2013].

3.8. Collective action

Volunteer crowds can come together to affect change in their world. Early in the days of
crowdsourcing, this situation hit home with the academic computer science community
when a well-known professor at UC Berkeley named Jim Gray disappeared at sea
while flying his plane. The community rallied, quickly hacking together software to
search satellite images of the region to find Jim’s downed plane, where he might still
be [Hellerstein and Tennenhouse 2011].

These events were precursor to work that study and collect collective action efforts.
However, as with all collective action problems, getting off the ground can be a chal-
lenge. Thus, Catalyst allows individuals to condition their participation on others’ in-
terest, so that I might commit to tutoring only if ten people commit to attending my
tutoring session [Cheng and Bernstein 2014]. We may yet see examples of crowds com-
ing together not just to talk, but to act, as Mechanical Turk workers have done on
Dynamo (www.wearedynamo.org).

4. PASSIVE CROWDSOURCING

Crowd-sourcing is often perceived as requiring a requester to make direct elicitation of
human effort. However, the relationship between requester and the crowd can also be
indirect. In passive crowdsourcing the crowd produce useful “work product” simply as
part of their regular behavior. That is, the work is a side-effect of what people were do-
ing ordinarily. Rather than directing the efforts of the crowd as in the active scenarios,
the requester is passively monitoring behavioral traces and leveraging them.

As a simple example, take a Web search engine that collects user logs of search and
click behavior (i.e., which results are clicked after the search). The system observes
that when most users search for some concept (say, “fruit trees”) they conclude their
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search session on a particular entry in the search result page (say, the 37¢ result).
From this the system infers that the 3rd page is likely the best answer to the query
and the result is boosted to the top of the list [Culliss 2000]. The crowd here is doing
work for the “requester”-they are helping organize search results—but this is simply
a side-effect of how they would use the system ordinarily, which is to find results of
interest.

The difficulty in this approach is that passive crowdsourcing systems are explicitly
designed to avoid interfering with the worker’s “ordinary” behavior. This requires ef-
fective instrumentation, calibration, and inference that allows the system designer to
go from a noisy-signal-that is at best weakly connected to the desired work product—to
something useful. For example, the search engine does not directly ask the end user to
indicate which result is the best, rather they observe the click behavior and infer the
best result.

Passive designs are often used to achieve some effect in the original system (e.g., bet-
ter search results), but the traces can also be used for completely different applications.
For example, companies such as AirSage [AirSage 2014] have utilized the patterns by
which cell phones switch from tower to tower as people drive (the “ordinary” behavior
that allows cell phones to function) in order to model traffic flow and generate real-
time traffic data. In all of these instances there is no explicit “request” being made to
the crowd, but the crowd is nonetheless doing work.

4.1. Examples of passive crowd work

The idea of non-reactive measures has a significant history in the sociological litera-
ture [Webb et al. 1999] where researchers identified mechanisms for collecting data
without directly asking subjects. The quintessential example is the identification of
the most popular piece of art in the museum by observing how often different floor
tiles needed to be replaced.

The goal of this approach is the capture of specific measures by mining indirect
measures based on the accretion and erosion behaviors of populations as they move
around their daily lives. Accretion behaviors are those that involve the mining of cre-
ated artifacts. This may involve everything from cataloging what people throw in their
trash cans and put out on the curb to understand food consumption patterns [Rathje
and Murphy 2001] to tracking status updates on Twitter to understand the spread of
disease [Sadilek et al. 2012]. The converse, erosion patterns, track the (traditionally)
physical wear and tear on an object. The replaced floor tiles are an example as is study-
ing the so-called“cow-paths”—physical traces made by populations as they find the best
way to get from one place to another (often not the designed, paved solution). Although
the notion of “erosion” is less obvious in digital contexts, systems like Waze [Waze 2014]
have similarly analyzed individual paths (as measured by cell-phone traces) to identify
the fastest route from place to place. The Edit-wear and Read-wear system proposed
by [Hill et al. 1992] similarly captured where in a document individuals were spending
their time reading or editing.

There are many modern examples for passive crowd-work that leverage social media
data. Twitter, Facebook, foursquare, Flickr, and others have all been used as sources
of behavioral traces that are utilized for both empirical studies and in the design of
systems. A popular application has been the identification of leading indicators for
everything from the spread of disease [Sadilek et al. 2012] to political outcomes [Livne
et al. 2011]. As individuals signal their health (e.g., “high fever today, staying home”)
or their political opinions (e.g., “just voted for Obama,”) through social media channels,
this information can be used to predict the future value of some variable (e.g., number
of infections or who will win the election).
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Other systems have demonstrated the ability to generate sophisticated labels for
physical places by passively observing the traces of individuals. For example, the Live-
hoods project [Cranshaw et al. 2012] utilizes foursquare checkins to build refined mod-
els of geographically based communities, which are often different from the labeled
neighborhoods on a map. As individuals wander in their daily lives and report their lo-
cation to foursquare, the project is able to identify patterns of checkins across a larger
population and to identify those new neighborhood structures. Similar projects have
utilized geotagged data to identify where tourists go [Flickr 2010] and identify place
“semantics” using tagged (both in the textual and geographical sense) images [Ratten-
bury et al. 2007].

Passive solutions have also leveraged as a means for providing support. For exam-
ple, the HelpMeOut system [Hartmann et al. 2010] used instrumented Integrated De-
velopment Environments (IDEs) as way of logging a developer’s reaction to an error.
By logging the error and fix, the system could build a database of recommendations
that could be provided to future developers encountering the same issue. The Codex
system [Fast et al. 2014] identified common programing idioms by analyzing the work-
product of developers (millions of lines of Ruby code) to provide labels and warnings to
future developers. Query-Feature Graphs [Fourney et al. 2011] mined search logs for
common tasks in an end-user application (the image editing program, GIMP). Often
people would issue queries such as “how do I remove red-eyes in GIMP.” The system
found these common queries and by mining the Web identified common commands
that were used in response documents. This allowed the system to automatically sug-
gest commands given a high level end-user need. CommandSpace [Adar et al. 2014]
extended this idea by jointly modeling both system features and natural language (in
this case from Adobe Photoshop). This information was mined from “found” text which
included tutorials, message forums, and other traces left by end-users on the Web. By
recognizing system features in text and utilizing a distributed vector representation,
a number of translations could be supported. For example, finding related features,
searching for features based on text, search by analogy, and identifying likely uses of
a feature.

4.2. System design

While attractive in that they don’t require intervention or disrupting the user, passive
crowd work platforms must still be carefully designed. The inference gap reflects the
fact that many of the observed behaviors are quite distant from the actual work we
would like to see performed. That is, we may have an Twitter user saying, “I'm feel
terrible today,” or a Google searcher looking for “fever medication.” However, what the
system requester would really like to know is if the person is sick with the Flu today.
The further the “instrument” is from what is being measured, the more difficult it is to
make the inference. Additionally, many systems and behaviors change over time (e.g.,
the search engine results change, a social media system is used differently, or the in-
terface adds additional functions or removes others). Consequently, a great deal of care
is necessary in such passive systems to ensure that the models and inferences remain
predictive over time [Lazer et al. 2014]. Ideally, a passive crowd system would measure
behavior in the closest way possible to what is actually the target of measurement, and
that any inference be updated.

A second issue to consider is the reactivity of the passive solution. That is, when the
mined behavioral data is used in a feedback loop inside of the system. For example,
a frequently clicked on search-result will move to the top of the search engine result
page. However, this will reduce the chance that other, potentially better pages will be
identified. Similarly, if the public is aware that tweets are being used to predict elec-
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tions, their tweeting behavior may change and forecasting accuracy may suffer [Gayo-
Avello 2013].

4.3. Ethics

The ethical issues with passive crowd work are somewhat different than their active
versions. Those producing work are likely unaware that their traces are being used and
for what purposes. The decision of when and how this information is shared is critical.
Facebook, for example, ran a field experiment to understand whether seeing positively-
or negatively-valenced emotion words in friends’ status updates would cause users to
use similarly-valenced words in their own posts [Kramer et al. 2014]. They called this a
test of “emotional contagion”. To test their hypothesis, they randomly hid some status
updates matching a list of positive or negative emotion words from the newsfeed, and
found a small effect where friends would use more of those same kinds of words if
the status update was included in the newsfeed. When Facebook published this result,
the mass media and several researchers blasted Facebook for running experiments on
emotional contagion without informed consent. The goal of learning about people was
overshadowed for these individuals by ethical concerns about online experimentation.
The case is an especially fraught one because internet companies such as Google and
Facebook run such experiments all the time to improve their products.

In addition, depending on how much is explained, the collection process that was
once non-reactive can no longer be perceived as such. The end user being tracked is
now aware of the collection and potentially the use of their behavioral traces and may
act differently than before. This also opens up the system to creative attacks (e.g., by a
search engine optimizer) who may seek to change the way the system operates. Finally,
because the worker is unaware that they are doing work they are frequently unpaid
(at least through direct compensation). These considerations must be weighed when
passive crowd work is used.

5. CHALLENGES IN CROWDSOURCING

Human-computer interaction is helping to shape the future of crowdsourcing through
its design of the technology that people will use to engage with crowdsoucing as either
requesters and crowd workers. Over the past few years, the field has become aware
that the problems that it choose to focus on or not may have a very real impact on not
only the benefits we stand to gain through crowdsourcing but also the impact that it
may have on how people choose to work in the future. Kittur et al. engage in a thorough
exploration of these challenges [Kittur et al. 2013]. It asks: What would it take for us
to be comfortable with our own children becoming fulltime crowd workers?

Since the earliest days of human computation, its proponents have discussed how
the eventual goal is to develop hybrid systems that engage with both humans intel-
ligence drawn from the crowd and machine intelligence realized through artificial in-
telligence and machine learning. This vision remains, but systems still utilize it in
very basic ways. One of our visions for crowdsourcing in the future is one in which
truly intelligent systems are developed more quickly by initially create crowd-powered
systems and then using them as scaffolding to gradually move to fully automated ap-
proaches.

Crowdsourcing has traditionally worked best, although not exclusively, for problems
that required little expertise. A challenge going forward is to push on the scope of prob-
lems possible to solve with crowdsourcing by engaging with expert crowds, embedding
needed expertise in the tools non-expert crowds use, or by using a flexible combination
of the two (e.g., [Retelny et al. 2014]).

As more people participate as crowd workers, it is becoming increasingly important
to understand this component of the labor force and what tools might be useful to cre-
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ate to help not only requesters but also workers. Workers on many crowd marketplaces
face inefficiencies that could be improved with better tools, such as finding tasks that
are best suited to their skills. It is also difficult for workers today to be rewarded over
time for acquiring expertise in a particular kind of crowd work.

6. CONCLUSION

Human-computer interaction has contributed to crowdsourcing by creating tools al-
lowing different stakeholders to participate more easily or more powerfully, and un-
derstanding how people participate in order to shape a brighter future for crowd work.
One of the reasons that crowdsourcing is interesting is because technology is allow-
ing groups to work together in ways that were infeasible only a few years ago. The
challenges going forward are to ensure that requesters and workers are able to realize
the potential of crowdsourcing without succumbing to its potential downsides, and to
continue to improve the systems enabling all of this so that even more is possible.
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