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sequent steps and frequently requires time-consuming itera-
tion. As such, resource limitations and process complexity 
constrain the creation processes of professionals, making it 
challenging to provide visualizations for the large collec-
tions of articles available on news websites today.  

Automation has been employed in news visualizations, yet 
these few solutions tend to be specific to small subsets of 
news articles. For example, applications generate annotated 
stock time series [12] or graphics to accompany articles that 
follow a strict narrative template [22].  

We explore how a complex visualization pipeline, or se-
quence of decisions and algorithms for solving them, can be 
automated to scale the creation of popular types of news 
geovisualizations. Our work contributes to automated news 
visualization research by identifying key criteria for a news 
map generation pipeline. We describe the NewsViews sys-
tem, which implements this pipeline to automatically gen-
erate visualizations to accompany news articles using geo-
graphic information from multiple sources. Criteria include 
pairing relevant data variables to article text, finding loca-
tions of interest, choosing relevant annotations, setting the 
map extent, and modeling maps’ visual interestingness.  

We secondly contribute a demonstration of how these crite-
ria can be operationalized, employing text mining and ex-
traction techniques as well as visual-spatial pattern analysis 
to realize the NewsViews pipeline. NewsViews identifies 
relevant features of the article (topics, locations, etc.) auto-
matically, and uses these features to select from hundreds of 
data variables and ~670,000 spatiotemporal “cases” (i.e., 
database cells). Multiple possible “views” (each represent-
ing a set of salient columns from a multi-topic table data-
base) are generated and visualized. A novel ranking tech-
nique selects the visualization to maximize the relevance of 
selected data and annotations to the article and leverage 
statistical features to align with users’ perceptions of map 
“interestingness.” Our final contribution is an evaluation of 
users’ reactions to our operationalized criteria. We evaluate 
our criteria as operationalized both independently and in 
combination, including a novel perceptual evaluation of 
Moran’s I as a measure of visual “interestingness.” 

RELATED WORK 

Narrative Visualization  
Research around narrative visualizations—visualizations 
that guide users’ interpretations using forms of visual, tex-
tual and procedural rhetoric [13, 25]—informs the design of 
NewsViews. Many exemplary artifacts motivating scholarly 
discussion come from news settings, where interactive vis-
ualizations presented with text articles help explain news 
[5]. Text annotations play an important role in guiding us-
ers’ interactions and interpretations [25, 13]. Annotations 
are used in two primary ways: to emphasize data-based 
observations (“observational” use), such as a maximum 
value in a series, or, as applied in NewsViews, to add in-
formation that is not otherwise presented (“additive”) [12].  

Typically, the annotated narrative visualizations that appear 
in online news contexts are the work of designers with ex-
pertise in graphics, statistics, and journalism. The time 
these experts spend creating graphics also makes it difficult 
to scale their process to the massive amounts of new and 
archived news content, motivating automated solutions.  

Automatic Visualization Generation and Annotation  
Various recent projects contribute methods for automatical-
ly generating or supplementing visualizations, such as by 
depicting a chain of news stories connecting two articles 
[27], or summarizing relations between scientific papers 
using metro-style maps [26]. Google News Timeline and 
Google Finance present automatically-generated visual 
summaries of articles, though typically using relatively 
simple chronological parameters. Narrative Science 
(http://narrativescience.com) produces narrative style re-
ports and graphics to walk end-users through datasets of 
interest. Visualization researchers have contributed methods 
for adding annotations to existing visualizations, including 
graphical and textual annotations to emphasize trends, max-
imum points, or means, among others [16], and text annota-
tions on interesting trends in point data (e.g., [15]).  

Our earlier system, Contextifier [12], produces narrative 
visualizations for online business news. Textual features of 
a news article about a company are used to generate a cus-
tomized line graph of that company’s stock. Additive anno-
tations drawn from other articles provide information rele-
vant to the company and context, yet external to the original 
article or data. These annotations are selected and placed 
using a combination of topical relevancy features, features 
suggesting important (historical) company events, and sali-
ency features computed on the data series. Most notably, 
whereas Contextifier focused on one data type and one spe-
cific instantiation (i.e., a stock time series) NewsViews is 
designed to work with articles from arbitrary domains, se-
lecting appropriate data of various types (i.e., georeferenced 
data, time series) and between possible visualizations. Like 
Contextifier, NewsViews generates annotation content from 
a news corpus but can also support observational annotation 
of extreme values (e.g., min/max).  

Wu et al. [21] proposed the semi-automated MuckRaker 
system for connecting news readers to a database of rele-
vant context using a visualization interface. Unlike 
NewsViews, MuckRaker leverages the crowd to improve 
automatic presentation features, yet still calls for explicit 
input from the user. Other work focuses on the generation 
and searching of very large tables of structured data, but 
does not concern visualization [4]. 

Geovisualization and News 
Maps often appear with news articles to improve readers’ 
understanding of a story’s geographic context, to make ge-
ographic trends personally relatable, or simply to attract 
readers’ attention [5, 9, 31]. A survey identifies maps as the 
most prevalent visual format used in a recent sample of 
narrative news contexts [12]. Presenting maps with articles 
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Wikifier outputs multiple possible links for ambiguous enti-
ties. To boost the accuracy of NewsView’s location tagging 
accuracy for these cases, we combine Wikifier’s output 
with that of OpenCalais [23] (a second named entity detec-
tor). OpenCalais is used to filter entities tagged as locations 
by Wikifier but persons by OpenCalais.  

2. View Generation (Column and Row Selection) 
Key to a successful visualization is the choice of an appro-
priate data variable. The view generator takes the infor-
mation outputted by the query extractor (consisting of ‘top-
ical’ noun phrases, identified locations, plus the article time 
stamp) and applies further analyses to generate “data 
views” (representing a selection of columns and rows) on a 
large table database. The NewsViews database consists of 
columns that reflect a particular piece of data (e.g., unem-
ployment, education, etc.). Rows are keyed by location for 
US states and counties (with counties as a default). If there 
are multiple samples of a variable from different periods 
(e.g., unemployment from 2009, 2010, 2011, etc.) a differ-
ent column is assigned to each. Retaining historical values 
is useful as it allows us to generate other visualization types 
(e.g., a time series for a given location) but also allows us to 
default to data from the time the article was written—a 
2005 article on unemployment plot data from 2013.  

A set (of size M) relevant views identified by the view gen-
eration step is then be passed to the visualization generator.  
The specific mechanisms for using the query information to 
select from all possible variables are detailed below.  

3, 4, and 5. Visualization Generation 
The visualization generator takes the filtered set of M views 
identified by the view generator and uses visualization best 
practices to generate a set of N annotated visualizations 
with D3. A mark generator (3) first assigns the best visuali-
zation mark type (e.g. point, line, polygon). In the default 
NewsViews implementation, these are polygons depicted 
using a Mercator projection. However, the pipeline is ex-
tensible to other mark types such as lines, bars, or small 
multiples, discussed further below. A retinal variable as-
signor (4) maps the selected data to a retinal variable (e.g., 
sequential color scheme with optimal binning; see Thematic 
Map Generation for details). The retinal variable assignor 
also identifies the default geographic extent (zoom level). 
An annotation engine (5) selects the descriptive annotations 
for (explicitly mentioned) map points from our news cor-
pus. The generator may produce more than M visualizations 
(i.e., N ≥ M) to allow for cases where more than one visual-
ization of a table view is possible (e.g., when the annotation 
content differs between two maps, different bins are used, 
or different zoom levels are proposed).  

6. Visualization Ranking 
The visualization ranker ranks the N visualizations pro-
duced by the visualization generator. Three criteria are 
used: the quality of the variable selection as captured by 
pointwise mutual information (PMI) between article text 
and variable labels, the annotation relevancy as captured by 

cosine similarity, and the visual interestingness as captured 
by Moran’s I. Our ranking (detailed below) prioritizes  var-
iable match to article (via PMI), followed by visual interest-
ingness. Our evaluation of annotation relevance and visual 
interestingness (Fig. 7) supports this ordering.   

ALGORITHMS FOR FINDING THE RIGHT MAP 
Below, we detail the specific algorithms used to model each 
step in the NewsViews pipeline for map generation (Fig. 3).  

Identifying the Best Variable for a Thematic Map 
A critical decision in the map creation pipeline concerns the 
data to be depicted with an article. The noun phrases from 
the first three sentences of an article (e.g., “job hunters” or 
“undergraduate degree”) rarely map directly to the name of 
variable likely to be most suitable (e.g., “percent with bach-
elors”). We devise an algorithm to negotiate this decision 
using a measure of mutual information. 

We rank the 155 variables (i.e., column descriptors) by their 
relevancy, calculating the co-occurrence score between the 
noun phrase and variable name weighted by Pointwise Mu-
tual Information (PMI) [2]. PMI measures how often relat-
ed two terms are by comparing how often both terms appear 
together in an article together versus independently. The 
more articles that mention both phrases simultaneously (i.e., 
the variable name and the extracted noun phrase), the high-
er the PMI. In practice, we convert the original variable 
description into a  sub-phrase set and determine the mean 
PMI between these and the article-derived noun phrases. 

Isolating descriptive variable names: Each variable is rep-
resented as a descriptive phrase, e.g. “fast-food-restaurants-
by-county,” which may be too specific to match any given 
article. To improve recall we automatically identify the 
noun phrases from the original variable string, e.g. ‘fast 
food restaurants’, ‘fast food’, ‘food’, ‘restaurant’ and ‘coun-
ty’. For each phrase, we count the matching documents in 
our corpus (as a fraction of corpus size). We discarded 
terms with relatively high frequencies (>0.05) such as 
‘county’ (0.057), and those with relatively low frequencies 
(<0.0001) such as ‘educational attainment’ (0.00009). We 
retained those with moderate score: ‘fast food restaurant’ 
(0.00052) in the variable ‘fast-food-restaurants-by-county’, 
and ‘bachelor’s degree’ (0.00054) in the variable ‘educa-
tional-attainment-25-years-and-over-bachelor's-degree-or-
higher.’ The filtered set of noun phrases is retained (we 
refer to this set as Variable Phrases, or VarP). 

Capture Potential Topic From Articles: For a given article, 
all the noun phrases from the first three sentences are ex-
tracted from the query extractor. We remove phrases that 
have low tf-idf scores (<0.001), as these are less likely to 
carry important information about the article topic 
(weighting is calculated based on global frequency of the 
phrases in the news corpus collection). We refer to the re-
maining noun phrases as “NP terms.” 

Calculate PMI: We can then calculate the PMI between 
each NP term and VarP term and aggregate these as the 
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mean PMI for all pairings. For efficiency, all articles in our 
dataset are indexed in a Lucene database. For each pair, we 
issue 3 queries, one for NP, one for VarP, and one for both 
VarP and NP simultaneously (the number of matching arti-
cles are retained as NPcount, VarP count, and NP_VarPcount 
respectively). From this, we calculate PMI as follows: ܲܫܯ(ܰܲ, (ܲݎܸܽ = ଶ݃݋݈ ܲ(ܰܲ,  (ܲݎܸܽ)ܲ(ܲܰ)ܲ(ܲݎܸܽ

= ଶ݃݋݈ ݎܸܽ_ܲܰ ௖ܲ௢௨௡௧ ܰ⁄(ܰ ௖ܲ௢௨௡௧ ܰ) × ݎܸܽ) ௖ܲ௢௨௡௧ ܰ⁄ )⁄   
The mean PMI is calculated by determining the PMI for 
each phrase pairing (i.e., one item from NP and one from 
VarP) and normalizing by the number of such pairings (i.e., 
NPcount * VarPcount. Variables are ranked by their mean PMI 
relative to the extracted noun phrases. The intuition here is 
that the higher a variable’s PMI value is relative to the arti-
cle text, the more relevant the variable to that content.  

Thresholding to Focus Variable Relevance: Given our ex-
pectations that the match between article content and a rel-
evant data set will most drive map usefulness, we threshold 
the PMI-ranked list. This involves finding the threshold 
based on where PMI values decrease sharply in the ranked 
list and then filtering to the high PMI articles. 

Reference Map Default: NewsViews supports reference as 
well as thematic maps. A heuristic is used to create refer-
ence maps if no PMI score for any variable surpasses a 
threshold (set to 2.5 after qualitative experimentation). If 
the threshold is not met, a reference map is created. The 
map is zoomed to the locations mentioned in the article, 
annotated with simple place-markers (Fig. 2, lower left). 

Generating Thematic Maps 
Having selected a set of georeferenced data from the table 
database, a retinal variable assignor determines the optimal 
mappings of a retinal variables (e.g., color, size, etc.) to 
visualize the data on a map. In the current implementation, 
we classify the data into 7 stepwise classes with the Jenks 
natural breaks classification method [14], an iterative data 
classification method to determine the best binning of val-
ues given the observed distances between sets of values. 
Following Brewer’s color guidelines for mapping and visu-
alization [3], NewsViews selects sequential schemes for the 
Jenk’s derived classes in which lightness steps dominate, 
using light colors to depict low data values and dark colors 
for higher values. Future work might incorporate alternative 
schemes (e.g., gradients or semantically-driven colors [20]). 

Identifying Related Locations and Geographic Extent 
Primary Location Identification: Defining an appropriate 
map extent (or default zoom region) allows users to focus 
on the critical area that is relevant to the article. We first 
identify the “primary location” that represents the main 
location of interest for that article by extracting “seed loca-
tions” from the title and the first three sentences. The occur-
rence of each seed location within the article is counted. 

Seed locations are ranked based on occurrence, and the 
most often mentioned seed is assumed as primary.  

Identifying Related Locations: We then detected the rela-
tionship between the primary and other locations (li, the ith 
location in the set of other locations mentioned in the article text). Three distance measures are calculated and 
combined. A spatial distance captures the Euclidean (coor-
dinate) distance between location li and the primary loca-
tion. A hierarchy distance captures the distance between the 
two locations on the geo-hierarchy tree, prioritizing local 
extent. This allows us to capture the idea of “sibling” rela-
tionships (two counties in Virginia), enclosure relationships 
(Michigan  Washtenaw County  Ann Arbor), and other 
longer range relationships (e.g., Ann Arbor, MI and Alex-
andria County, VA). Different weights can be assigned to 
different “hops,” (e.g., state to county versus county to city) 
though we use an equal weight. Finally, a weighted location 
co-occurrence distance corresponds to the number of times 
the two locations are mentioned together in the same cor-
pus. We use the PMI(li,lmain) function, as described above, 
to calculate this weight. 

The three measures are combined in a final location similar-
ity score for each location and the primary location 
sim(li,lprimary) by dividing the weighted location co-
occurrence difference (which reflects a strong relationship 
between the two locations), by the sum of the spatial and 
semantic distances (where larger numbers indicate dissimi-
larity). Other implementations of these three forms of loca-
tion similarity are possible. We stress the importance of the 
gross relationships between them over specific operational-
izations and combination functions.  

Filtering Locations and Setting Extent: We experimented 
with different thresholds for filtering the location set. Spe-
cifically, we kept the locations that had high scores 
(sim(li,lprimary) ≥ 0.1), and discarded those with low scores 
(sim(li,lprimary) < 0.1). We set the map extent to the area that 
exactly contains all the high scoring locations (as well as 
the primary location). 

Selecting and Placing Text Annotations 
NewsViews supplements each generated thematic map with 
additive annotations—textual descriptions that provide re-
lated information (context) about the map, data, and input 
article topic where the source of that information is not the 
data or input article itself [12]. That is, we find text in other 
articles that are related to locations and data on the map.  

For example, NewsViews considers the related locations 
(calculated above) for which we have articles that focus on 
the location and variable of interest. Thus, if the context 
article is about unemployment in Springfield, MA, 
NewsViews will identify Westfield, MA (a nearby town 
that often co-occurs in articles about Springfield) and Prov-
idence, RI (a similarly sized New England town that also 
co-occurs in Springfield-related articles). NewsViews will 
then isolate news articles about these locations (Westfield 
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ample, calculating the number of locations mentioned in 
relation to the anticipated familiarity of those locations to 
users (inferred from population data, for example). This 
enables prioritizing map creation where locations are less 
likely to be known, and where a map’s locational af-
fordances are more useful.  

CONCLUSION 
We present an automated pipeline for generating relevant 
geovisualizations given context articles.  By mining a con-
text article locations and topic, NewsViews can select from 
a range of data views.  We demonstrate that the system is 
able to generate visualizations that are both “interesting” 
and relevant.  By automating visualization construction, our 
system can be applied in resource constrained environments 
that nonetheless have a huge corpus of articles.  
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